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Rheological  equations of state a re  postulated for weak suspensions of rigid ellipsoidal par -  
t icles on the basis  of the s t ruc ture-cont inuous  concept. 

In setting up the rheological  equations of state for polymer substances one usually s ta r t s  out f rom 
either of two al ternat ive concepts. The f i rs t  concept is a phenomenological (macroscopic) one based on 
the premise  that the medium under considerat ion is continuous. The rheological  equations of state a re  
derived here  f rom the general  laws of mechanics  and phenomenological thermodynamics  with certain 
assumptions  concerning the given medium (isotropy, elast ici ty,  etc.). The rheological  constants or the 
rheological  functions for  this substance which appear  in those equations a re  determined experimentally.  
Without dwelling on  an enumerat ion of existing phenomenological theories for the theology of polymers ,  
we will re fer  here to a ra ther  complete survey  of such theories  in [1] by Truesdel l  and Noll. 

The other concept - a s t ruc tura l  (microscopic) one - defines the rheological  behavior of complex 
substances in t e rms  of known theological  proper t ies  of their components,  with the macroscop ic  p rope r -  
ties expressed by average  mic roscop ic  charac te r i s t i c s .  This concept has been elaborated successful ly,  
for  instance,  in developing the theory  of rigid balls or ellipsoids in a dilute suspension. Such substances 
include var ious  colloidal suspensions,  cer ta in  biopolymer solutions, and also solutions of part icles  with 
a supermolecular  s t ruc ture  (e.g., par t ic les  of var ious v i ruses  or mice l la r  aggregates  of molecules) [2]. 

It has been suggested in the works by Einstein [3], Jef fery  [4], Pe ter l in  [5], Kuhn [6], Saito ['7], and 
Pokrovski i  [8, 9] that the solid phase consis ts  of rigid balls [3] or monodispersed ellipsoids [4, 5, 6, 7, S, 9] 
while all the remaining space is filled with a Newtonian liquid. It is also suggested that the dimensions of 
the rigid par t ic les  in suspension a re  much la rger  than the dimensions of the solvent molecules (but suf-  
f iciently smal l  to be subject  to a rotat ional  Brownian motion [5, 6, 7, 8, 9]) - thus one may t rea t  the sol -  
vent as a continuous medium and apply the equations f rom the mechanics  of continuous media. The ap-  
plicability of the said theories  is limited to dilute suspensions,  since interact ion between part icles  of the 
solid phase is not taken into account. 

Where polymer  substances a re  concerned,  the s t ruc tura l  theories,  which a re  capable of relat ing 
all rheological  cha rac te r i s t i c s  to the molecular  s t ruc tu re  of the medium, a re  natually p re fe r red  to the 
phenomenological theories including information about the molecular  s t ruc ture  on an a pr iori  basis.  In 
many cases ,  however,  where the molecular  s t ruc ture  of the medium is sufficiently complex to make the 
development of a s t ruc tura l  theory  ve ry  difficult, a phenomenological concept remains  the only feasible 
one. 

A number  of models has been proposed during the last 10-15 yea r s  which can be classif ied as s t ruc -  
ture-cont inuous ones [10-21]. The f i r s t  a t tempts  at agglomerat ing the par t ic les  of a continuum into a s t r uc -  
ture were  made by Duhem [22]. His ideas were fur ther  developed in the theory of an elast ic medium by 
Cossera t  [23], where eve ry  part icle  has six degrees  of f reedom so that a possible spatial orientat ion of 
par t ic les  can be accounted for. This theory was put into a final fo rm in [24]. 

The idea of using a s t ruc tura l  continuum for studying the motion of a liquid which contains a flexible 
or  rigid subs t ruc ture  (colloidal solutions, h igh-polymer  solutions) must  be credited to Anzelius [25]. 
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E r i c k s e n  has developed this idea into his theory  of an i so t rop ic  liquids [17, 18]. In o rder  to desc r ibe  the 
poss ib le  or ienta t ions  and deformat ions  of subs t ruc tu re  pa r t i c l e s  in the liquid, E r i c k s e n  introduces at  
eve ry  point in the liquid an or ienta t ion  vec tor  n. Postulat ing the dependence of the s t r e s s  tensor  tij c o m -  
ponents on the s t r a i n  r a t e  t ensor  dij components  and on the d i rec t ion  vec to r  n = {hi} , he der ives  equa-  
t ions which define a s imply  an iso t rop ic  liquid (with an uns t ra inable  subs t ruc tu re  [n[ = 1): 

h~ = - -  P6ij "q- 2Fd u + (Pa + ~d~,mnknm) n~nj + 2~t 3 (djhnkn ~ -I- d~nhnj),  (1) 

n, = r -k )~ (di in ~ --dl,,~nan,~ni) (2) 

on the bas i s  of the invar iance  pr inciple  [26] and of the r e su l t s  obtained by Rivl in  [27]. 

The rheological  constants  p, Pl, ~2, g3, )t a r e  de te rmined  by exper imen t  or  by juxtaposit ion with 
other  theor ies .  

In this a r t i c l e  Eqs. (1), (2) defining a s imple  an iso t rop ic  liquid will be applied to obtain the rheological  
equations of s ta te  for  suspens ions  of r igid e l l ipsoidal  par t i c les .  The rheologica l  constants  a r e  de te rmined  
with the aid of the s t ruc tu ra l  theory  by J e f f e ry  [4] if the equivalent radius  of the el l ipsoidal  pa r t i c les  r 

= ~fa-~ > 4 . 1 0  -6 m*) or  with the aid of the Saito theory  [7] when r < 10 -6 m. 

It has been shown in [4] that,  in the Stokes approximat ion ,  the equations of motion for  a r igid e l -  
l ipsoid suspended in an incompres s ib l e  Newtonian liquid which flows with shear  

v~ = O, v u = Kx,  v~ = 0; K ~- const, (3) 

a r e  

K 
r  + = -L:- (1 + q  cos 2q~), 

(4) 

o~o~_{~= K q sin 2tp sin 20. 
4 

It  has been a s s u m e d  he re  that the t r a n s p o r t  ve loc i ty  of the el l ipsoid is the s ame  as  the veloci ty  of the liquid. 

It follows f r o m  these  equat ions,  which have been ver i f ied  exper imenta l ly  by Mason [28], that e l -  
l ipsoidal  pa r t i c l e s  or ient  t hemse lves  k inemat ica l ly  along the d i rec t ion of flow. The or ienta t ion of pa r t i c les  
is cha rac t e r i zed  he re  by the posi t ion dis t r ibut ion function of the ma jo r  axes  p(q~) de te rmined  f r o m  Eq. (5) 
[29]: 

~ -  [p (~) @ = o. (5) 
d(p 

When the pa r t i c l e s  have an equivalent  rad ius  r < 10 -6 m [5], i t  becomes  n e c e s s a r y  to take into a c -  
count thei r  ro ta t ional  Brownian motion,  which impedes  this orientat ion,  in that case  the or ienta t ion of a 
par t ic le  is cha rac t e r i zed  by the dis t r ibut ion function F (~0, 0) which the F o k k e r - P l a n c k  equation of s teady 
s ta te  

DrAF = div (F~) (6) 

defines. 

When one considers the shearing flow (3) of a simple anisotropic Ericksenian liquid (1), (2) at [X I 
_< 1, it is easy to ascertain that the equations of orientation (2) are the same as the equations of motion 
for a rigid ellipsoid suspended in an incompressible Newtonian liquid which flows with shear (3). Indeed, 
when 

n x=cosq0sin0, n u=sinq0sin{~, n ~ = c o s S ,  

Eqs. (2) for  the flow (3) a r e  the s a m e  as the J e f f e ry  equations [4]. The or ienta t ion vec to r  n here  coincides 
d i rec t ional ly  with the ma jo r  axis  of the el l ipsoid (Fig. 1) while the constant  X = q. The identicity of the 

* Suspensions a r e  c lass i f ied  accord ing  to the equivalent  radius  of el l ipsoidal  pa r t i c les  when wate r  is the 
solvent  {P0 = 0.001 N. s e c / m  2) [5]. 
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Fig. i. Stat ionary sys t em 
of coordinates  for  analyzing 
the motion of a rigid e l -  
l ipsoid within a shear ing 
f l o w v y = K X ,  v x = v z  =0  of 
a Newtonian liquid. 

E r i cksen  equations of or ienta t ion and the Je f fe ry  equations, together  with 
the r a the r  genera l  fo rm of re la t ion  (1), suggest  that one t ry  to use Eq. (1), 
which defines a s imple anisotropic  Er icksen ian  liquid and which is a v e r -  
aged through the respec t ive  major  axes  distr ibution function (5) or (6) 
for  ell ipsoidal par t ic les ,  as the rheological  equation of state for  dilute 
suspensions of rigid ell ipsoidal  par t ic les  

Tq = - -  p6q + 21*di) + ~h < nini ) + 1*2dkrn ( nknmn~nj ) 

+ 2~a (dj~, < nhn ~ ) + d~h < nkni ) ). (7) 

In o rde r  to de te rmine  the rheological  constants which appear  in the equa- 
tion of s ta te  (7) for  suspensions of par t ic les  with an equivalent radius r 
> 4 �9 10 -6 m, the effect ive v iscos i ty  t~0 found f rom Eq. (7) for  a s imple 
shear ing flow (3) 

1.i 1.2 /x~ = 1. + - ~ - -  < sin2q~sin20 > +-~--- < sin~2q~sin~O > +1.3< sin20 >, (8) 

will be compared with the express ion  for effect ive v iscos i ty  found by 
Je f fe ry  on the basis of a s t ruc tura l  concept [4]. We obtain here  the fo[- 

lowing express ions  for the rheological  constants: 

1.=1.o(1 + _ ( I ) 4  ' )' (9) 
ab ao 

1.~ = 0, (10) 

2 r ( a0 I 4 ) (11) 

( 2 1 ' 
1.3 = 1.o a_a_~__ \ ~g(a"+ b2) b=ao ,)" (12) 

These  re la t ions  ag ree  with those obtained by Hand [30] on a di f ferent  p remise .  

In averaging the express ion  (7) through the dis tr ibut ion function defined by Eq. (5), we obtain for the 
shear ing flow 

T y ~ l  - -  Tz~ = O, T ~  - -  T~ = O, 

Txu={ix~ 1.~ p~ [ C ~ ( p 2 + 1 ) + 2  _ _ 2 ] ~ 1 . 3 (  1 I )}K, T u ~ = T ~ = O .  
2 (p2_l)~  g (c2pe+l ) (Ca+l )  ' V(C2p ~ + l ) ( C  a + l )  

The dis tr ibut ion function for  the orbi t  constant C has been found exper imenta l ly  by Mason [31]. 

In this way, weak suspensions of rigid ell ipsoidal par t ic les  with r > 4 �9 10-6m behave like Newtonian 
liquids whose coefficient  of the effective v iscos i ty  depends on the v iscos i ty  of the solvent it0, on the volume 
concentra t ion of par t ic les ,  on the re la t ive  dimensions of par t ic les ,  and on the distr ibution function of the 
orbi t  constant C. 

F o r  suspensions of rigid ell ipsoidal par t ic les  with r < 10 -6 m the theological  constants a re  de t e r -  
mined by compar ing the effect ive v iscos i ty  f rom (8) with the express ion  for  effect ive v iscos i ty  based on the 
s t ruc tura l  concept by Saito [7], which in the de terminat ion  of effective v iscos i ty  accounts - unlike the 
Je f fe ry  concept - for  rotat ional  Brownian motion occur r ing  in suspensions of par t ic les  with r < 10 -6 m. 

In this case  the express ions  for 1., P2, #3 a re  the same as (9), (11), (12), respec t ive ly ,  while 

1.1 = 121.0D, r a2--b~ (10') 
ab" a2ao + b2~o 

By averaging the s t r e s s  tensor  (7) components through the distr ibution function F(q~, 0) obtained in 
[5], we obtain f rom Eq. (6) for  a shear ing flow 

~, c~ 2 ( 3 ~__l)_]_1*2Dr 4~, a ~ (  3 2~ a2 ) 12~,Dr ~I 2 (13) 
T~--T~=I*I 5 02+36 7 7 ~2q_36 "5 3 ~2q_100 +1.3 5 ~2+36'  
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Tuu - -  T ~  = ~h 
5 (~2+36 7 7 a 2 + 3 6  

( 3  2k o~ ) ~  I2~D~ (~ 2 
• -g+ 

T x v  = IX -J- ,tt 1 5 D r (r '~ + 36 + Ix2 15 ' C~ 2 q- 36 

( 3 1 ~ ' - - 6 0 ) + / X ~ (  2 2 k'C ~ )} 
• 350 - -  4--20~+1 , 3 ~ 35 (~zq_36 K, 

(14) 

(15) 

T~r z =  O, Tu z =  O. (16) 

It follows f r o m  (13), (14), (15), (16) that the media  cons idered  he re  dis t inct ly display Newtonian p rop-  
e r t i es :  the Weis senbe rg  effect  [32] and the dependence of effect ive v i scos i ty  on the shear ing  ra te .  F o r  
the case  under cons idera t ion  he re  the effect ive v i s cos i t y  as  a function of cr and p has been  tabulated by 
Sheraga  [33] with the averag ing  done on a computer .  She raga ' s  r e su l t s  have been conf i rmed exper imenta l ly  
by Yang [34]. 

Thus, the Newtonian behavior  of r igid el l ipsoidal  par t ic les  in dilute suspens ions  is re la ted  to the 
ro ta t ional  Brownian motion and is evident in suspens ions  of pa r t i c les  with an equivalent radius  r < 10 -6 m. 

The der ived equations (7) with the rheologica l  constants  de te rmined ,  then, make  it poss ible  to 
ana lyze  var ious  s imple  flow modes  of suspens ions  containing r igid e l i ipsoidal  par t ic les .  Accordingly,  the 
au thors  have analyzed s imple  elongation, flow in a shallow channel, a Po issonian  flow, and other kinds of 
flow, using for  the averag ing  in (7) the dis t r ibut ion functions de te rmined  by Pokrovski i  for  any a r b i t r a r y  
flow with smal l  ve loci ty  gradients .  

The equation of s ta te  fo r  media  under  cons idera t ion  he re  and analogous to (7) has  been derived by 
Pokrovski i  [8] f r o m  the mic ro rheo log ica l  point of view (s t ruc tura l  concept). F r o m  a compar i son  of r e l a -  
tion (7) with the s t r e s s  t ensor  der ived by Pokrovski i ,  one can draw the following conclusions.  

1. In the absence  of Brownian motion,  the s t r e s s  tensor  (7) is ident ical  to the Pokrovski i  s t r e s s  
tensor .  

2. Brownian motion is accounted for  by Pokrovsk i i  [8] analogously as  Kuhn [6] has done it, while 
the au thors  of this s tudy have used the Saito theory  [7] and, consequently,  ce r t a in  d i f fe rences  be -  
tween Eq. (7) and the r e su l t s  of the Pokrovsk i i  ana lys i s  [8] a r e  in evidence. It is easy  to show, 
neve r the l e s s ,  that  the exp res s ions  for  shea r  v i scos i ty  der ived on the bas i s  of the r e spec t ive  
theor ies  agree .  This conf i rms  as  Saito and Sugita have predicted [35], the equivalency of the 
final r e s u l t s  obtained on the bas i s  of the Saito theory  [7] and the Kuhn theory  [6]. 

tij 
P 
5ij 
dij 
wij 
ni 
~t, Pl, P2, P3, ~ 
r 
a,  b 
Vx, Vy, v z 
o)~, we 
q = (a 2 -b2)/(a 2 + b2); 

Dr 
O3 

nx, ny, n z 

Tij 
<> 
Po 

N O T A T I O N  

is the s t r e s s  t ensor  of a s imple  an i so t rop ic  Er i cksen ian  liquid; 
is the i so t rop ic  p r e s s u r e ;  
is  the Kronecker  delta;  
is the s t r a in  r a t e  tensor ;  
is  the veloci ty  vo r t ex  tensor ;  
is the or ienta t ion vec to r ;  
a r e  the rheologica l  constants ;  
is  the equivalent  rad ius  of r igid el l ipt ical  pa r t i c l e s ;  
a r e  the ma jo r  and minor  s e m i a x e s  of an ell ipsoid;  
a r e  the ve loc i ty  components  in Ca r t e s i an  coordinates  x, y, z; 
a r e  the components  of angular  ve loci ty  in spher ica l  coordinates  r ,  % 0; 

is  the ro ta t ional  diffusivity;  
is the angular  ve loci ty  vec to r ;  
a r e  the or ienta t ion vec to r  components  in Ca r t e s i an  coordinates  x, y, z; 
is the s t r e s s  t ensor  of a suspens ion  containing r igid eUipsoidal  par t ic les ;  
is the symbol  of averag ing  through the dis t r ibut ion function; 
is the dynamic  v i scos i ty  of the solvent;  
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o o, po, 
p =a/b; 
cr = K/D r. 

is the volume concentration of suspended particles; 
a re  the functions of a and b defined in the Jeffery theory; 
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